TOP榜写作榜手机小说

最近更新新书入库全部小说

腐文网 >> 虐心耽美 >> 武圣之冠 >> 椭圆

是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为一个小于1的常值的点之轨迹。它是圆锥曲线的一种,即圆锥与平面的截线。在方程上可以写为:x^2/a^2+y^2/b^2=1,它还有其他一些表达形式,如参数方程表示等等。在开普勒行星运行三定律中扮演了重要角色,即行星轨道是,以恒星为焦点。

基本信息

中文名:

目前状况:使用中

外文名:oval-shaped

应用学科:数学、几何

几何类别:圆锥曲线

表达式:x?/a?+y?/b?=1

适用领域范围:几何计算

参数方程:x=acosθ,y=bsinθ

研究历史

阿波罗尼奥斯所着的八册《圆锥曲线论(conics)》中首次提出了今日大家熟知的ellip(抛物线)、(双曲线)等与圆锥截线有关的名词,可以说是古希腊几何学的精擘之作。

直到十六、十七世纪之交,开普勒(kepler)行星运行三定律的发现才知道行星绕太阳运行的轨道,是一种以太阳为其一焦点的。

定义

第一定义

正在加载

平面内与两定点

的距离的和等于常数

)的动点p的轨迹叫做。

正在加载

即:

其中两定点

叫做的焦点,两焦点的距离

叫做的焦距。

为的动点。

正在加载

截与两焦点连线重合的直线所得的弦为长轴,长为

截垂直平分两焦点连线的直线所得弦为短轴,长为

正在加载

可变为

第二定义

平面内到定点

(c,0)的距离和到定直线

不在

上)的距离之比为常数

(即离心率

,0a;1)的点的轨迹是。

正在加载

其中定点

为的焦点

,定直线

称为的准线(该定直线的方程是

(焦点在x轴上),或

(焦点在y轴上))。

其他定义

根据的一条重要性质:上的点与长轴两端点连线的斜率之积是定值,定值为

,可以得出:

正在加载

在坐标轴内,动点(

)到两定点(

)(

)的斜率乘积等于常数;0)

正在加载

注意:考虑到斜率为零时不满足乘积为常数,所以

无法取到,即该定义仅为去掉两个点的。

也可看做圆按一定方向作压缩或拉伸一定比例所得图形。

方程

中心点为(h,k),主轴平行于x轴时,

正在加载

标准方程

正在加载f点在x轴

高中课本在平面直角坐标系中,用方程描述了,的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

的标准方程有两种,取决于焦点所在的坐标轴:

1)焦点在x轴时,标准方程为:x?/a?+y?/b?=1(aa;0)

2)焦点在y轴时,标准方程为:y?/a?+x?/b?=1(aa;0)

上任意一点到f1,f2距离的和为2a,f1,f2之间的距离为2c。而公式中的b?=a?-c?。b是为了书写方便设定的参数。

又及:如果中心在原点,但焦点的位置不明确在x轴或y轴时,方程可设为;0,na≠n)。即标准方程的统一形式。

的面积是πab。可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ

标准形式的在(x0,y0)点的切线就是:xx/a?+yy/b?=1。切线的斜率是:-b?x/a?y,这个可以通过很复杂的代数计算得到。

参数方程

x=acosθ,y=bsinθ。

求解上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解

x=axcosβ,y=bxsinβa为长轴长的一半

极坐标

(一个焦点在极坐标系原点,另一个在θ=0的正方向上)

r=a(1-e?)/(1-ecosθ)

(e为的离心率=c/a)

几何性质

基本性质

1、范围:焦点在

轴上

;焦点在

轴上

2、对称性:关于x轴对称,y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)

4、离心率:

或e=√(1-b^2/a?)

5、离心率范围:0a;1

6、离心率越大就越扁,越小则越接近于圆。

7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)

正在加载

8、

(m为实数)为离心率相同的。

9、p为上的一点,a-c≤pf1(或pf2)≤a+c。

切线法线

定理1:设f1、f2为c的两个焦点,p为c上任意一点。若直线ab切c于点p,且a和b在直线上位于p的两侧,则∠apf1=∠bpf2。

定理2:设f1、f2为c的两个焦点,p为c上任意一点。若直线ab为c在p点的法线,则ab平分∠f1pf2。

上述两定理的证明可以查看参考资料。

光学性质

的面镜(以的长轴为轴,把转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;的透镜(某些截面为)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都


状态提示:椭圆
第1页完,继续看下一页

武圣之冠最新章节 - 武圣之冠全文阅读 - 武圣之冠txt下载 - 君之沉沦的全部小说 - 武圣之冠 腐文网

猜你喜欢: 无限流修改世界诡秘归来(诡秘之主同人)男校中的女生【限高H】战舰少女 女儿雪风被鬼父提督宫奸后怀孕,鬼父提督得知后,太开心了将雪风艹到晕迷女老板一边打电话一边被推荒古天帝数码世界历练兽人之雌性无能女白领的天体生活死亡街机厅辣手兵王我的黑夜是你的白天魂穿修真至圣香山淫圣传丧尸日记未知的一个世界守护黑暗面【快穿】官能物语(H、慎入)捡只恶鬼谈恋爱陛下在上无口少女幻梦同学是背德变态俘获于你的猎物网游之八卦魔界2我不是淫贼异形之星际战争赤色血姬女生寝室3王老汉扒灰[强强]末世之跟着丧尸兄有肉吃严禁女配作死绿帽的幸福
完本推荐: 江山射姬颤栗之花黄警官沦陷记(H)壮警的烦恼(H)将军宠夫[网王同人]被弟控的人生大佬们的玩物【NP】-v文丝袜国反英雄的色欲之旅穿成白骨肿么破性事随想昼日三接踏仙欲望宿舍楼(H)父恋(父子)重生之深爱虎狼同穴完结版(肉香味美)田径体育生 11.18更新!有照片~小林的丝袜美腿妈妈一条来自末世的哈士奇穿越,攻略,捡节操+番外我爱的珊珊不来迟[GL]Fate-Grand Fuck看对眼渣攻终成受【乡村乱情】
最近更新: 无口少女幻梦同学是背德变态儒林外史女老板一边打电话一边被推碧蓝航线 光辉的绿母系列 NTR战舰少女 女儿雪风被鬼父提督宫奸后怀孕,鬼父提督得知后,太开心了将雪风艹到晕迷海下的蔷薇追忆平凡年代的全家故事(全)哥布林杀手 Unlighted world(人类畜牧)绿帽的幸福香山淫圣传穿越人生王老汉扒灰战姬母女丼职场女性的酸痛体验娇妻之舞(翻译文)冬季恋歌劫中淫(全本)姊弟情深(原名:无间欲念)书里书外(翻译文)崩坏3 琪亚娜的情人节作战(琪亚娜X芽衣)坠落女王(番外篇)温暖金牛女明日方舟 龙门近卫局事件簿明日方舟 阿米娅的危机我的妹妹不可能这么可爱 我的妹妹不可能喜欢上了这个明日方舟 德克萨斯的秘密(双狼百合向)战舰少女 法戈的工作少女前线 默默无闻者的故事战舰少女 列克星敦的母子奷乱交少女前线 痴女前线 代理人篇

武圣之冠最新章节手机版 - 武圣之冠全文阅读手机版 - 武圣之冠txt下载手机版 - 君之沉沦的全部小说 - 武圣之冠 腐文网移动版 - 腐文网手机站